Copied to
clipboard

G = C23.472C24order 128 = 27

189th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C23.472C24, C24.336C23, C22.2552+ 1+4, C425C418C2, C23⋊Q822C2, (C2×C42).68C22, C23.157(C4○D4), C23.34D437C2, (C22×C4).104C23, (C23×C4).119C22, C24.C2289C2, C23.23D4.37C2, C23.10D4.23C2, (C22×D4).175C22, (C22×Q8).141C22, C23.67C2365C2, C23.83C2342C2, C2.26(C22.32C24), C2.53(C22.45C24), C2.C42.208C22, C2.83(C23.36C23), C2.28(C22.49C24), (C4×C22⋊C4)⋊92C2, (C2×C4).736(C4○D4), (C2×C4⋊C4).319C22, C22.348(C2×C4○D4), (C2×C22⋊C4).509C22, SmallGroup(128,1304)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.472C24
C1C2C22C23C22×C4C23×C4C4×C22⋊C4 — C23.472C24
C1C23 — C23.472C24
C1C23 — C23.472C24
C1C23 — C23.472C24

Generators and relations for C23.472C24
 G = < a,b,c,d,e,f,g | a2=b2=c2=f2=1, d2=c, e2=ca=ac, g2=b, ab=ba, ede-1=gdg-1=ad=da, ae=ea, af=fa, ag=ga, bc=cb, fdf=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef=ce=ec, cf=fc, cg=gc, eg=ge, fg=gf >

Subgroups: 484 in 238 conjugacy classes, 92 normal (22 characteristic)
C1, C2, C2, C2, C4, C22, C22, C22, C2×C4, C2×C4, D4, Q8, C23, C23, C23, C42, C22⋊C4, C4⋊C4, C22×C4, C22×C4, C22×C4, C2×D4, C2×Q8, C24, C2.C42, C2.C42, C2×C42, C2×C42, C2×C22⋊C4, C2×C4⋊C4, C23×C4, C22×D4, C22×Q8, C4×C22⋊C4, C23.34D4, C425C4, C23.23D4, C24.C22, C23.67C23, C23⋊Q8, C23.10D4, C23.83C23, C23.472C24
Quotients: C1, C2, C22, C23, C4○D4, C24, C2×C4○D4, 2+ 1+4, C23.36C23, C22.32C24, C22.45C24, C22.49C24, C23.472C24

Smallest permutation representation of C23.472C24
On 64 points
Generators in S64
(1 11)(2 12)(3 9)(4 10)(5 38)(6 39)(7 40)(8 37)(13 41)(14 42)(15 43)(16 44)(17 45)(18 46)(19 47)(20 48)(21 49)(22 50)(23 51)(24 52)(25 53)(26 54)(27 55)(28 56)(29 57)(30 58)(31 59)(32 60)(33 63)(34 64)(35 61)(36 62)
(1 51)(2 52)(3 49)(4 50)(5 36)(6 33)(7 34)(8 35)(9 21)(10 22)(11 23)(12 24)(13 25)(14 26)(15 27)(16 28)(17 29)(18 30)(19 31)(20 32)(37 61)(38 62)(39 63)(40 64)(41 53)(42 54)(43 55)(44 56)(45 57)(46 58)(47 59)(48 60)
(1 3)(2 4)(5 7)(6 8)(9 11)(10 12)(13 15)(14 16)(17 19)(18 20)(21 23)(22 24)(25 27)(26 28)(29 31)(30 32)(33 35)(34 36)(37 39)(38 40)(41 43)(42 44)(45 47)(46 48)(49 51)(50 52)(53 55)(54 56)(57 59)(58 60)(61 63)(62 64)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 17 9 47)(2 46 10 20)(3 19 11 45)(4 48 12 18)(5 42 40 16)(6 15 37 41)(7 44 38 14)(8 13 39 43)(21 59 51 29)(22 32 52 58)(23 57 49 31)(24 30 50 60)(25 63 55 35)(26 34 56 62)(27 61 53 33)(28 36 54 64)
(2 52)(4 50)(5 34)(6 8)(7 36)(10 22)(12 24)(14 26)(16 28)(17 19)(18 32)(20 30)(29 31)(33 35)(37 39)(38 64)(40 62)(42 54)(44 56)(45 47)(46 60)(48 58)(57 59)(61 63)
(1 55 51 43)(2 28 52 16)(3 53 49 41)(4 26 50 14)(5 46 36 58)(6 19 33 31)(7 48 34 60)(8 17 35 29)(9 25 21 13)(10 54 22 42)(11 27 23 15)(12 56 24 44)(18 62 30 38)(20 64 32 40)(37 45 61 57)(39 47 63 59)

G:=sub<Sym(64)| (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,17,9,47)(2,46,10,20)(3,19,11,45)(4,48,12,18)(5,42,40,16)(6,15,37,41)(7,44,38,14)(8,13,39,43)(21,59,51,29)(22,32,52,58)(23,57,49,31)(24,30,50,60)(25,63,55,35)(26,34,56,62)(27,61,53,33)(28,36,54,64), (2,52)(4,50)(5,34)(6,8)(7,36)(10,22)(12,24)(14,26)(16,28)(17,19)(18,32)(20,30)(29,31)(33,35)(37,39)(38,64)(40,62)(42,54)(44,56)(45,47)(46,60)(48,58)(57,59)(61,63), (1,55,51,43)(2,28,52,16)(3,53,49,41)(4,26,50,14)(5,46,36,58)(6,19,33,31)(7,48,34,60)(8,17,35,29)(9,25,21,13)(10,54,22,42)(11,27,23,15)(12,56,24,44)(18,62,30,38)(20,64,32,40)(37,45,61,57)(39,47,63,59)>;

G:=Group( (1,11)(2,12)(3,9)(4,10)(5,38)(6,39)(7,40)(8,37)(13,41)(14,42)(15,43)(16,44)(17,45)(18,46)(19,47)(20,48)(21,49)(22,50)(23,51)(24,52)(25,53)(26,54)(27,55)(28,56)(29,57)(30,58)(31,59)(32,60)(33,63)(34,64)(35,61)(36,62), (1,51)(2,52)(3,49)(4,50)(5,36)(6,33)(7,34)(8,35)(9,21)(10,22)(11,23)(12,24)(13,25)(14,26)(15,27)(16,28)(17,29)(18,30)(19,31)(20,32)(37,61)(38,62)(39,63)(40,64)(41,53)(42,54)(43,55)(44,56)(45,57)(46,58)(47,59)(48,60), (1,3)(2,4)(5,7)(6,8)(9,11)(10,12)(13,15)(14,16)(17,19)(18,20)(21,23)(22,24)(25,27)(26,28)(29,31)(30,32)(33,35)(34,36)(37,39)(38,40)(41,43)(42,44)(45,47)(46,48)(49,51)(50,52)(53,55)(54,56)(57,59)(58,60)(61,63)(62,64), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,17,9,47)(2,46,10,20)(3,19,11,45)(4,48,12,18)(5,42,40,16)(6,15,37,41)(7,44,38,14)(8,13,39,43)(21,59,51,29)(22,32,52,58)(23,57,49,31)(24,30,50,60)(25,63,55,35)(26,34,56,62)(27,61,53,33)(28,36,54,64), (2,52)(4,50)(5,34)(6,8)(7,36)(10,22)(12,24)(14,26)(16,28)(17,19)(18,32)(20,30)(29,31)(33,35)(37,39)(38,64)(40,62)(42,54)(44,56)(45,47)(46,60)(48,58)(57,59)(61,63), (1,55,51,43)(2,28,52,16)(3,53,49,41)(4,26,50,14)(5,46,36,58)(6,19,33,31)(7,48,34,60)(8,17,35,29)(9,25,21,13)(10,54,22,42)(11,27,23,15)(12,56,24,44)(18,62,30,38)(20,64,32,40)(37,45,61,57)(39,47,63,59) );

G=PermutationGroup([[(1,11),(2,12),(3,9),(4,10),(5,38),(6,39),(7,40),(8,37),(13,41),(14,42),(15,43),(16,44),(17,45),(18,46),(19,47),(20,48),(21,49),(22,50),(23,51),(24,52),(25,53),(26,54),(27,55),(28,56),(29,57),(30,58),(31,59),(32,60),(33,63),(34,64),(35,61),(36,62)], [(1,51),(2,52),(3,49),(4,50),(5,36),(6,33),(7,34),(8,35),(9,21),(10,22),(11,23),(12,24),(13,25),(14,26),(15,27),(16,28),(17,29),(18,30),(19,31),(20,32),(37,61),(38,62),(39,63),(40,64),(41,53),(42,54),(43,55),(44,56),(45,57),(46,58),(47,59),(48,60)], [(1,3),(2,4),(5,7),(6,8),(9,11),(10,12),(13,15),(14,16),(17,19),(18,20),(21,23),(22,24),(25,27),(26,28),(29,31),(30,32),(33,35),(34,36),(37,39),(38,40),(41,43),(42,44),(45,47),(46,48),(49,51),(50,52),(53,55),(54,56),(57,59),(58,60),(61,63),(62,64)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,17,9,47),(2,46,10,20),(3,19,11,45),(4,48,12,18),(5,42,40,16),(6,15,37,41),(7,44,38,14),(8,13,39,43),(21,59,51,29),(22,32,52,58),(23,57,49,31),(24,30,50,60),(25,63,55,35),(26,34,56,62),(27,61,53,33),(28,36,54,64)], [(2,52),(4,50),(5,34),(6,8),(7,36),(10,22),(12,24),(14,26),(16,28),(17,19),(18,32),(20,30),(29,31),(33,35),(37,39),(38,64),(40,62),(42,54),(44,56),(45,47),(46,60),(48,58),(57,59),(61,63)], [(1,55,51,43),(2,28,52,16),(3,53,49,41),(4,26,50,14),(5,46,36,58),(6,19,33,31),(7,48,34,60),(8,17,35,29),(9,25,21,13),(10,54,22,42),(11,27,23,15),(12,56,24,44),(18,62,30,38),(20,64,32,40),(37,45,61,57),(39,47,63,59)]])

38 conjugacy classes

class 1 2A···2G2H2I2J2K4A···4H4I···4V4W4X4Y4Z
order12···222224···44···44444
size11···144442···24···48888

38 irreducible representations

dim1111111111224
type+++++++++++
imageC1C2C2C2C2C2C2C2C2C2C4○D4C4○D42+ 1+4
kernelC23.472C24C4×C22⋊C4C23.34D4C425C4C23.23D4C24.C22C23.67C23C23⋊Q8C23.10D4C23.83C23C2×C4C23C22
# reps12222212111282

Matrix representation of C23.472C24 in GL6(𝔽5)

100000
010000
001000
000100
000040
000004
,
400000
040000
004000
000400
000040
000004
,
100000
010000
004000
000400
000010
000001
,
230000
430000
000400
001000
000012
000004
,
400000
040000
000100
004000
000020
000033
,
100000
240000
001000
000400
000010
000044
,
300000
030000
003000
000300
000020
000033

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[2,4,0,0,0,0,3,3,0,0,0,0,0,0,0,1,0,0,0,0,4,0,0,0,0,0,0,0,1,0,0,0,0,0,2,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,0,4,0,0,0,0,1,0,0,0,0,0,0,0,2,3,0,0,0,0,0,3],[1,2,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,1,4,0,0,0,0,0,4],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,3,0,0,0,0,0,0,2,3,0,0,0,0,0,3] >;

C23.472C24 in GAP, Magma, Sage, TeX

C_2^3._{472}C_2^4
% in TeX

G:=Group("C2^3.472C2^4");
// GroupNames label

G:=SmallGroup(128,1304);
// by ID

G=gap.SmallGroup(128,1304);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,448,253,568,758,723,675,136]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=f^2=1,d^2=c,e^2=c*a=a*c,g^2=b,a*b=b*a,e*d*e^-1=g*d*g^-1=a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f=c*e=e*c,c*f=f*c,c*g=g*c,e*g=g*e,f*g=g*f>;
// generators/relations

׿
×
𝔽